Imec makes haptics chip for prosthetic arms
- ผู้เขียน:Ella Cai
- ปล่อยบน:2017-05-17
Imec has made a prototype implantable chip that gives patients more intuitive control over their arm prosthetics.
The thin-silicon chip is a world’s first for electrode density and was developed in collaboration with researchers at the University of Florida, as part of the IMPRESS project funded by the DARPA’s HAPTIX program to create a closed-loop system for future-generation haptic prosthetics technology.
Today, arm prosthetics technologies have been shown to give patients the ability to move their artificial arm and hand to grasp and manipulate objects. This is done by reading out signals from the person’s muscles or peripheral nerves to control electromotors in the prosthesis thereby conveying intent.
According to Rizwan Bashirullah, associate professor of Electrical and Computer Engineering, and director of the University of Florida’s IMPRESS program (Implantable Multimodal Peripheral Recording and Stimulation System), “this effort aims to create such new peripheral nerve interfaces with greater channel count, electrode density, and information stability, enabled largely by imec’s technological innovation.”
The thin-silicon chip is a world’s first for electrode density and was developed in collaboration with researchers at the University of Florida, as part of the IMPRESS project funded by the DARPA’s HAPTIX program to create a closed-loop system for future-generation haptic prosthetics technology.
Today, arm prosthetics technologies have been shown to give patients the ability to move their artificial arm and hand to grasp and manipulate objects. This is done by reading out signals from the person’s muscles or peripheral nerves to control electromotors in the prosthesis thereby conveying intent.
Although very helpful, these prosthetics still don’t allow a fine motor control and don’t give patients a feeling of touch. Future advanced prosthetics under development will provide amputees with rich sensory content from these artificial limbs by delivering precise electrical patterns to the person’s peripheral nerves using implanted electrode interfaces.
According to Rizwan Bashirullah, associate professor of Electrical and Computer Engineering, and director of the University of Florida’s IMPRESS program (Implantable Multimodal Peripheral Recording and Stimulation System), “this effort aims to create such new peripheral nerve interfaces with greater channel count, electrode density, and information stability, enabled largely by imec’s technological innovation.”